Local minimality of $\mathbb{R}^N$-valued and $\mathbb{S}^N$-valued Ginzburg-Landau vortex solutions in the unit ball $B^N$ (2111.07669v1)
Abstract: We study the existence, uniqueness and minimality of critical points of the form $m_{\varepsilon,\eta}(x) = (f_{\varepsilon,\eta}(|x|)\frac{x}{|x|}, g_{\varepsilon,\eta}(|x|))$ of the functional [ E_{\varepsilon,\eta}[m] = \int_{BN} \Big[\frac{1}{2} |\nabla m|2 + \frac{1}{2\varepsilon2} (1 - |m|2)2 + \frac{1}{2\eta2} m_{N+1}2\Big]\,dx ] for $m=(m_1, \dots, m_N, m_{N+1}) \in H1(BN,\mathbb{R}{N+1})$ with $m(x) = (x,0)$ on $\partial BN$. We establish a necessary and sufficient condition on the dimension $N$ and the parameters $\varepsilon$ and $\eta$ for the existence of an escaping vortex solution $(f_{\varepsilon,\eta}, g_{\varepsilon,\eta})$ with $g_{\varepsilon,\eta}> 0$. We also establish its uniqueness and local minimality. In the limiting case $\eta = 0$, we prove the local minimality of the degree-one vortex solution for the Ginzburg-Landau (GL) energy for every $\varepsilon > 0$ and $N \geq 2$. Similarly, when $\varepsilon = 0$, we prove the local minimality of the degree-one escaping vortex solution to an $\mathbb{S}N$-valued GL model arising in micromagnetics for every $\eta > 0$ and $2 \leq N \leq 6$.