Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Joint Demosaicing and High Dynamic Range Imaging within a Single Shot (2111.07281v1)

Published 14 Nov 2021 in eess.IV and cs.CV

Abstract: Spatially varying exposure (SVE) is a promising choice for high-dynamic-range (HDR) imaging (HDRI). The SVE-based HDRI, which is called single-shot HDRI, is an efficient solution to avoid ghosting artifacts. However, it is very challenging to restore a full-resolution HDR image from a real-world image with SVE because: a) only one-third of pixels with varying exposures are captured by camera in a Bayer pattern, b) some of the captured pixels are over- and under-exposed. For the former challenge, a spatially varying convolution (SVC) is designed to process the Bayer images carried with varying exposures. For the latter one, an exposure-guidance method is proposed against the interference from over- and under-exposed pixels. Finally, a joint demosaicing and HDRI deep learning framework is formalized to include the two novel components and to realize an end-to-end single-shot HDRI. Experiments indicate that the proposed end-to-end framework avoids the problem of cumulative errors and surpasses the related state-of-the-art methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.