Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sci-Net: Scale Invariant Model for Buildings Segmentation from Aerial Imagery (2111.06812v5)

Published 12 Nov 2021 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: Buildings' segmentation is a fundamental task in the field of earth observation and aerial imagery analysis. Most existing deep learning-based methods in the literature can be applied to a fixed or narrow-range spatial resolution imagery. In practical scenarios, users deal with a broad spectrum of image resolutions. Thus, a given aerial image often needs to be re-sampled to match the spatial resolution of the dataset used to train the deep learning model, which results in a degradation in segmentation performance. To overcome this challenge, we propose, in this manuscript, Scale-invariant Neural Network (Sci-Net) architecture that segments buildings from wide-range spatial resolution aerial images. Specifically, our approach leverages UNet hierarchical representation and Dense Atrous Spatial Pyramid Pooling to extract fine-grained multi-scale representations. Sci-Net significantly outperforms state of the art models on the Open Cities AI and the Multi-Scale Building datasets with a steady improvement margin across different spatial resolutions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.