Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Serverless Platforms on the Edge: A Performance Analysis (2111.06563v1)

Published 12 Nov 2021 in cs.DC

Abstract: The exponential growth of Internet of Things (IoT) has given rise to a new wave of edge computing due to the need to process data on the edge, closer to where it is being produced and attempting to move away from a cloud-centric architecture. This provides its own opportunity to decrease latency and address data privacy concerns along with the ability to reduce public cloud costs. The serverless computing model provides a potential solution with its event-driven architecture to reduce the need for ever-running servers and convert the backend services to an as-used model. This model is an attractive prospect in edge computing environments with varying workloads and limited resources. Furthermore, its setup on the edge of the network promises reduced latency to the edge devices communicating with it and eliminates the need to manage the underlying infrastructure. In this book chapter, first, we introduce the novel concept of serverless edge computing, then, we analyze the performance of multiple serverless platforms, namely, OpenFaaS, AWS Greengrass, Apache OpenWhisk, when set up on the single-board computers (SBCs) on the edge and compare it with public cloud serverless offerings, namely, AWS Lambda and Azure Functions, to deduce the suitability of serverless architectures on the network edge. These serverless platforms are set up on a cluster of Raspberry Pis and we evaluate their performance by simulating different types of edge workloads. The evaluation results show that OpenFaaS achieves the lowest response time on the SBC edge computing infrastructure while serverless cloud offerings are the most reliable with the highest success rate.

Citations (12)

Summary

We haven't generated a summary for this paper yet.