Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Domain-Independent and Real-Time Gesture Recognition Using mmWave Signal (2111.06195v3)

Published 11 Nov 2021 in cs.CV, cs.HC, and cs.LG

Abstract: Human gesture recognition using millimeter-wave (mmWave) signals provides attractive applications including smart home and in-car interfaces. While existing works achieve promising performance under controlled settings, practical applications are still limited due to the need of intensive data collection, extra training efforts when adapting to new domains, and poor performance for real-time recognition. In this paper, we propose DI-Gesture, a domain-independent and real-time mmWave gesture recognition system. Specifically, we first derive signal variations corresponding to human gestures with spatial-temporal processing. To enhance the robustness of the system and reduce data collecting efforts, we design a data augmentation framework for mmWave signals based on correlations between signal patterns and gesture variations. Furthermore, a spatial-temporal gesture segmentation algorithm is employed for real-time recognition. Extensive experimental results show DI-Gesture achieves an average accuracy of 97.92\%, 99.18\%, and 98.76\% for new users, environments, and locations, respectively. We also evaluate DI-Gesture in challenging scenarios like real-time recognition and sensing at extreme angles, all of which demonstrate the superior robustness and effectiveness of our system.

Citations (57)

Summary

We haven't generated a summary for this paper yet.