Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Neural Network Identification for Low-Speed Ship Maneuvering Model (2111.06120v2)

Published 11 Nov 2021 in eess.SY, cs.SY, and math.DS

Abstract: Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts - an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the "standard" RNN, and the random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.

Citations (35)

Summary

We haven't generated a summary for this paper yet.