Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
181 tokens/sec
2000 character limit reached

Critical Sentence Identification in Legal Cases Using Multi-Class Classification (2111.05721v2)

Published 10 Nov 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Inherently, the legal domain contains a vast amount of data in text format. Therefore it requires the application of NLP to cater to the analytically demanding needs of the domain. The advancement of NLP is spreading through various domains, such as the legal domain, in forms of practical applications and academic research. Identifying critical sentences, facts and arguments in a legal case is a tedious task for legal professionals. In this research we explore the usage of sentence embeddings for multi-class classification to identify critical sentences in a legal case, in the perspective of the main parties present in the case. In addition, a task-specific loss function is defined in order to improve the accuracy restricted by the straightforward use of categorical cross entropy loss.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.