Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An enhancement of the fast time-domain boundary element method for the three-dimensional wave equation (2111.05205v1)

Published 9 Nov 2021 in math.NA, cs.NA, and physics.comp-ph

Abstract: Our objective is to stabilise and accelerate the time-domain boundary element method (TDBEM) for the three-dimensional wave equation. To overcome the potential time instability, we considered using the Burton--Miller-type boundary integral equation (BMBIE) instead of the ordinary boundary integral equation (OBIE), which consists of the single- and double-layer potentials. In addition, we introduced a smooth temporal basis, i.e. the B-spline temporal basis of order $d$, whereas $d=1$ was used together with the OBIE in a previous study [Takahashi 2014]. Corresponding to these new techniques, we generalised the interpolation-based fast multipole method that was developed in \cite{takahashi2014}. In particular, we constructed the multipole-to-local formula (M2L) so that even for $d\ge 2$ we can maintain the computational complexity of the entire algorithm, i.e. $O(N_{\rm s}{1+\delta} N_{\rm t})$, where $N_{\rm s}$ and $N_{\rm t}$ denote the number of boundary elements and the number of time steps, respectively, and $\delta$ is theoretically estimated as $1/3$ or $1/2$. The numerical examples indicated that the BMBIE is indispensable for solving the homogeneous Dirichlet problem, but the order $d$ cannot exceed 1 owing to the doubtful cancellation of significant digits when calculating the corresponding layer potentials. In regard to the homogeneous Neumann problem, the previous TDBEM based on the OBIE with $d=1$ can be unstable, whereas it was found that the BMBIE with $d=2$ can be stable and accurate. The present study will enhance the usefulness of the TDBEM for 3D scalar wave problems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.