Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Gated Linear Model induced U-net for surrogate modeling and uncertainty quantification (2111.05123v1)

Published 8 Nov 2021 in stat.ML and cs.LG

Abstract: We propose a novel deep learning based surrogate model for solving high-dimensional uncertainty quantification and uncertainty propagation problems. The proposed deep learning architecture is developed by integrating the well-known U-net architecture with the Gaussian Gated Linear Network (GGLN) and referred to as the Gated Linear Network induced U-net or GLU-net. The proposed GLU-net treats the uncertainty propagation problem as an image to image regression and hence, is extremely data efficient. Additionally, it also provides estimates of the predictive uncertainty. The network architecture of GLU-net is less complex with 44\% fewer parameters than the contemporary works. We illustrate the performance of the proposed GLU-net in solving the Darcy flow problem under uncertainty under the sparse data scenario. We consider the stochastic input dimensionality to be up to 4225. Benchmark results are generated using the vanilla Monte Carlo simulation. We observe the proposed GLU-net to be accurate and extremely efficient even when no information about the structure of the inputs is provided to the network. Case studies are performed by varying the training sample size and stochastic input dimensionality to illustrate the robustness of the proposed approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube