Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple odd $β$-cycle inequalities for binary polynomial optimization (2111.04858v3)

Published 8 Nov 2021 in cs.DM and math.CO

Abstract: We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd $\beta$-cycle inequalities valid for this polytope, showed that these generally have Chv{\'a}tal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle hypergraph instances. Moreover, they describe a separation algorithm in case the instance is a cycle hypergraph. We introduce a weaker version, called simple odd $\beta$-cycle inequalities, for which we establish a strongly polynomial-time separation algorithm for arbitrary instances. These inequalities still have Chv{\'a}tal rank 2 in general and still suffice to describe the multilinear polytope for cycle hypergraphs. Finally, we report about computational results of our prototype implementation. The simple odd $\beta$-cycle inequalities sometimes help to close more of the integrality gap in the experiments; however, the preliminary implementation has substantial computational cost, suggesting room for improvement in the separation algorithm.

Citations (17)

Summary

We haven't generated a summary for this paper yet.