Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded and unbounded cohomology of homeomorphism and diffeomorphism groups (2111.04365v5)

Published 8 Nov 2021 in math.GT, math.AT, and math.GR

Abstract: We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring generated by the bounded Euler class. These seem to be the first examples of groups for which the entire bounded cohomology can be described without being trivial. We further prove that, contrary to ordinary cohomology, the diffeomorphisms groups of the circle and of the closed 2-disc have the same bounded cohomology as their homeomorphism groups and that both differ from the ordinary cohomology. Finally, we determine the low-dimensional bounded cohomology of homeo- and diffeomorphism of the spheres $Sn$ and of certain 3-manifolds. In particular, we answer a question of Ghys by showing that the Euler class in $H4(Homeo_\circ(S3))$ is unbounded.

Summary

We haven't generated a summary for this paper yet.