Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

K-sparse Pure State Tomography with Phase Estimation (2111.04359v2)

Published 8 Nov 2021 in quant-ph, cs.CC, and physics.optics

Abstract: Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits by using state-of-the-art quantum compressive sensing (CS) methods. In this article, QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$ qubits in a specific measurement set-up, i.e., denoted as $K$-sparse, is achieved without any initial knowledge and with quantum polynomial-time complexity of resources based on the assumption of the existence of polynomial size quantum circuits for implementing exponentially large powers of a specially designed unitary operator. The algorithm includes $\mathcal{O}(2 \, / \, \vert c_{k}\vert2)$ repetitions of conventional phase estimation algorithm depending on the probability $\vert c_{k}\vert2$ of the least possible basis state in the superposition and $\mathcal{O}(d \, K \,(log K)c)$ measurement settings with conventional quantum CS algorithms independent from the number of qubits while dependent on $K$ for constant $c$ and $d$. Quantum phase estimation algorithm is exploited based on the favorable eigenstructure of the designed operator to represent any pure state as a superposition of eigenvectors. Linear optical set-up is presented for realizing the special unitary operator which includes beam splitters and phase shifters where propagation paths of single photon are tracked with which-path-detectors. Quantum circuit implementation is provided by using only CNOT, phase shifter and $- \pi \, / \, 2$ rotation gates around X-axis in Bloch sphere, i.e., $R_{X}(- \pi \, / \, 2)$, allowing to be realized in NISQ devices. Open problems are discussed regarding the existence of the unitary operator and its practical circuit implementation.

Summary

We haven't generated a summary for this paper yet.