Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can semi-supervised learning reduce the amount of manual labelling required for effective radio galaxy morphology classification? (2111.04357v4)

Published 8 Nov 2021 in astro-ph.GA and cs.LG

Abstract: In this work, we examine the robustness of state-of-the-art semi-supervised learning (SSL) algorithms when applied to morphological classification in modern radio astronomy. We test whether SSL can achieve performance comparable to the current supervised state of the art when using many fewer labelled data points and if these results generalise to using truly unlabelled data. We find that although SSL provides additional regularisation, its performance degrades rapidly when using very few labels, and that using truly unlabelled data leads to a significant drop in performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.