Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of two-level methods with general coarse solvers (2111.04189v1)

Published 7 Nov 2021 in math.NA and cs.NA

Abstract: Multilevel methods are among the most efficient numerical methods for solving large-scale linear systems that arise from discretized partial differential equations. The fundamental module of such methods is a two-level procedure, which consists of compatible relaxation and coarse-level correction. Regarding two-level convergence theory, most previous works focus on the case of exact (Galerkin) coarse solver. In practice, however, it is often too costly to solve the Galerkin coarse-level system exactly when its size is relatively large. Compared with the exact case, the convergence theory of inexact two-level methods is of more practical significance, while it is still less developed in the literature, especially when nonlinear coarse solvers are used. In this paper, we establish a general framework for analyzing the convergence of inexact two-level methods, in which the coarse-level system is solved approximately by an inner iterative procedure. The framework allows us to use various (linear, nonlinear, deterministic, randomized, or hybrid) solvers in the inner iterations, as long as the corresponding accuracy estimates are available.

Summary

We haven't generated a summary for this paper yet.