Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order-theoretic trees: monadic second-order descriptions and regularity (2111.04083v4)

Published 7 Nov 2021 in cs.LO and cs.DM

Abstract: An order-theoretic forest is a countable partial order such that the set of elements larger than any element is linearly ordered. It is an order-theoretic tree if any two elements have an upper-bound. The order type of a branch can be any countable linear order. Such generalized infinite trees yield convenient definitions of the rank-width and the modular decomposition of countable graphs. We define an algebra based on only four operations that generate up to isomorphism and via infinite terms these order-theoretic trees and forests. We prove that the associated regular objects, those defined by regular terms, are exactly the ones that are the unique models of monadic second-order sentences.

Citations (1)

Summary

We haven't generated a summary for this paper yet.