Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Increasing Fairness in Predictions Using Bias Parity Score Based Loss Function Regularization (2111.03638v1)

Published 5 Nov 2021 in cs.LG and cs.AI

Abstract: Increasing utilization of machine learning based decision support systems emphasizes the need for resulting predictions to be both accurate and fair to all stakeholders. In this work we present a novel approach to increase a Neural Network model's fairness during training. We introduce a family of fairness enhancing regularization components that we use in conjunction with the traditional binary-cross-entropy based accuracy loss. These loss functions are based on Bias Parity Score (BPS), a score that helps quantify bias in the models with a single number. In the current work we investigate the behavior and effect of these regularization components on bias. We deploy them in the context of a recidivism prediction task as well as on a census-based adult income dataset. The results demonstrate that with a good choice of fairness loss function we can reduce the trained model's bias without deteriorating accuracy even in unbalanced dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.