Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Bounds for Differentially Private Anonymized Histograms (2111.03257v1)

Published 5 Nov 2021 in cs.DS and cs.CR

Abstract: In this note, we consider the problem of differentially privately (DP) computing an anonymized histogram, which is defined as the multiset of counts of the input dataset (without bucket labels). In the low-privacy regime $\epsilon \geq 1$, we give an $\epsilon$-DP algorithm with an expected $\ell_1$-error bound of $O(\sqrt{n} / e\epsilon)$. In the high-privacy regime $\epsilon < 1$, we give an $\Omega(\sqrt{n \log(1/\epsilon) / \epsilon})$ lower bound on the expected $\ell_1$ error. In both cases, our bounds asymptotically match the previously known lower/upper bounds due to [Suresh, NeurIPS 2019].

Citations (6)

Summary

We haven't generated a summary for this paper yet.