Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Joint Source-Channel Coding for Image Transmission with Visual Protection (2111.03234v3)

Published 5 Nov 2021 in cs.CR

Abstract: Joint source-channel coding (JSCC) has achieved great success due to the introduction of deep learning (DL). Compared to traditional separate source-channel coding (SSCC) schemes, the advantages of DL-based JSCC (DJSCC) include high spectrum efficiency, high reconstruction quality, and relief of "cliff effect". However, it is difficult to couple existing secure communication mechanisms (e.g., encryption-decryption mechanism) with DJSCC in contrast with traditional SSCC schemes, which hinders the practical usage of this emerging technology. To this end, our paper proposes a novel method called DL-based joint protection and source-channel coding (DJPSCC) for images that can successfully protect the visual content of the plain image without significantly sacrificing image reconstruction performance. The idea of the design is to use a neural network to conduct visual protection, which converts the plain image to a visually protected one with the consideration of its interaction with DJSCC. During the training stage, the proposed DJPSCC method learns: 1) deep neural networks for image protection and image deprotection, and 2) an effective DJSCC network for image transmission in the protected domain. Compared to existing source protection methods applied with DJSCC transmission, the DJPSCC method achieves much better reconstruction performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jialong Xu (12 papers)
  2. Bo Ai (230 papers)
  3. Wei Chen (1290 papers)
  4. Ning Wang (300 papers)
  5. Miguel Rodrigues (33 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.