Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The No Endmarker Theorem for One-Way Probabilistic Pushdown Automata (2111.02688v2)

Published 4 Nov 2021 in cs.FL and cs.CC

Abstract: In various models of one-way pushdown automata, the explicit use of two designated endmarkers on a read-once input tape has proven to be extremely useful for making a conscious, final decision on the acceptance/rejection of each input word right after reading the right endmarker. With no endmarkers, by contrast, a machine must constantly stay in either accepting or rejecting states at any moment since it never notices the end of the input instance. This situation, however, helps us analyze the behavior of the machine whose tape head makes the consecutive moves on all prefixes of a given extremely long input word. Since those two machine formulations have their own advantages, it is natural to ask whether the endmarkers are truly necessary to correctly recognize languages. In the deterministic and nondeterministic models, it is well-known that the endmarkers are removable without changing the acceptance criteria of each input instance. This paper proves that, for a more general model of one-way probabilistic pushdown automata, the endmarkers are also removable. This is proven by employing probabilistic transformations from an "endmarker" machine to an equivalent "no-endmarker" machine at the cost of double exponential state complexity without compromising its error probability. By setting this error probability appropriately, our proof also provides an alternative proof to both the deterministic and the nondeterministic models as well.

Citations (3)

Summary

We haven't generated a summary for this paper yet.