Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A reduced order Schwarz method for nonlinear multiscale elliptic equations based on two-layer neural networks (2111.02280v2)

Published 3 Nov 2021 in math.NA and cs.NA

Abstract: Neural networks are powerful tools for approximating high dimensional data that have been used in many contexts, including solution of partial differential equations (PDEs). We describe a solver for multiscale fully nonlinear elliptic equations that makes use of domain decomposition, an accelerated Schwarz framework, and two-layer neural networks to approximate the boundary-to-boundary map for the subdomains, which is the key step in the Schwarz procedure. Conventionally, the boundary-to-boundary map requires solution of boundary-value elliptic problems on each subdomain. By leveraging the compressibility of multiscale problems, our approach trains the neural network offline to serve as a surrogate for the usual implementation of the boundary-to-boundary map. Our method is applied to a multiscale semilinear elliptic equation and a multiscale $p$-Laplace equation. In both cases we demonstrate significant improvement in efficiency as well as good accuracy and generalization performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.