Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Algorithms for Hedging with Frictions (2111.01931v4)

Published 2 Nov 2021 in q-fin.MF, q-fin.CP, and q-fin.PM

Abstract: This work studies the deep learning-based numerical algorithms for optimal hedging problems in markets with general convex transaction costs on the trading rates, focusing on their scalability of trading time horizon. Based on the comparison results of the FBSDE solver by Han, Jentzen, and E (2018) and the Deep Hedging algorithm by Buehler, Gonon, Teichmann, and Wood (2019), we propose a Stable Transfer Hedging (ST-Hedging) algorithm, to aggregate the convenience of the leading-order approximation formulas and the accuracy of the deep learning-based algorithms. Our ST-Hedging algorithm achieves the same state-of-the-art performance in short and moderately long time horizon as FBSDE solver and Deep Hedging, and generalize well to long time horizon when previous algorithms become suboptimal. With the transfer learning technique, ST-Hedging drastically reduce the training time, and shows great scalability to high-dimensional settings. This opens up new possibilities in model-based deep learning algorithms in economics, finance, and operational research, which takes advantages of the domain expert knowledge and the accuracy of the learning-based methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.