Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Availability Attacks Create Shortcuts (2111.00898v2)

Published 1 Nov 2021 in cs.LG and cs.CR

Abstract: Availability attacks, which poison the training data with imperceptible perturbations, can make the data \emph{not exploitable} by machine learning algorithms so as to prevent unauthorized use of data. In this work, we investigate why these perturbations work in principle. We are the first to unveil an important population property of the perturbations of these attacks: they are almost \textbf{linearly separable} when assigned with the target labels of the corresponding samples, which hence can work as \emph{shortcuts} for the learning objective. We further verify that linear separability is indeed the workhorse for availability attacks. We synthesize linearly-separable perturbations as attacks and show that they are as powerful as the deliberately crafted attacks. Moreover, such synthetic perturbations are much easier to generate. For example, previous attacks need dozens of hours to generate perturbations for ImageNet while our algorithm only needs several seconds. Our finding also suggests that the \emph{shortcut learning} is more widely present than previously believed as deep models would rely on shortcuts even if they are of an imperceptible scale and mixed together with the normal features. Our source code is published at \url{https://github.com/dayu11/Availability-Attacks-Create-Shortcuts}.

Citations (52)

Summary

We haven't generated a summary for this paper yet.