Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Consequences of Dueling Bandits (2111.00870v1)

Published 16 Oct 2021 in cs.LG, math.ST, and stat.TH

Abstract: Multi-Armed-Bandit frameworks have often been used by researchers to assess educational interventions, however, recent work has shown that it is more beneficial for a student to provide qualitative feedback through preference elicitation between different alternatives, making a dueling bandits framework more appropriate. In this paper, we explore the statistical quality of data under this framework by comparing traditional uniform sampling to a dueling bandit algorithm and find that dueling bandit algorithms perform well at cumulative regret minimisation, but lead to inflated Type-I error rates and reduced power under certain circumstances. Through these results we provide insight into the challenges and opportunities in using dueling bandit algorithms to run adaptive experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.