Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free Probability for predicting the performance of feed-forward fully connected neural networks (2111.00841v3)

Published 1 Nov 2021 in stat.ML, cs.AI, cs.LG, math.OC, and math.PR

Abstract: Gradient descent during the learning process of a neural network can be subject to many instabilities. The spectral density of the Jacobian is a key component for analyzing stability. Following the works of Pennington et al., such Jacobians are modeled using free multiplicative convolutions from Free Probability Theory (FPT). We present a reliable and very fast method for computing the associated spectral densities, for given architecture and initialization. This method has a controlled and proven convergence. Our technique is based on an homotopy method: it is an adaptative Newton-Raphson scheme which chains basins of attraction. In order to demonstrate the relevance of our method we show that the relevant FPT metrics computed before training are highly correlated to final test accuracies - up to 85\%. We also nuance the idea that learning happens at the edge of chaos by giving evidence that a very desirable feature for neural networks is the hyperbolicity of their Jacobian at initialization.

Summary

We haven't generated a summary for this paper yet.