Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single-Item Fashion Recommender: Towards Cross-Domain Recommendations (2111.00758v2)

Published 1 Nov 2021 in cs.IR, cs.CV, and cs.LG

Abstract: Nowadays, recommender systems and search engines play an integral role in fashion e-commerce. Still, many challenges lie ahead, and this study tries to tackle some. This article first suggests a content-based fashion recommender system that uses a parallel neural network to take a single fashion item shop image as input and make in-shop recommendations by listing similar items available in the store. Next, the same structure is enhanced to personalize the results based on user preferences. This work then introduces a background augmentation technique that makes the system more robust to out-of-domain queries, enabling it to make street-to-shop recommendations using only a training set of catalog shop images. Moreover, the last contribution of this paper is a new evaluation metric for recommendation tasks called objective-guided human score. This method is an entirely customizable framework that produces interpretable, comparable scores from subjective evaluations of human scorers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.