Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GNNear: Accelerating Full-Batch Training of Graph Neural Networks with Near-Memory Processing (2111.00680v2)

Published 1 Nov 2021 in cs.LG and cs.AR

Abstract: Recently, Graph Neural Networks (GNNs) have become state-of-the-art algorithms for analyzing non-euclidean graph data. However, to realize efficient GNN training is challenging, especially on large graphs. The reasons are many-folded: 1) GNN training incurs a substantial memory footprint. Full-batch training on large graphs even requires hundreds to thousands of gigabytes of memory. 2) GNN training involves both memory-intensive and computation-intensive operations, challenging current CPU/GPU platforms. 3) The irregularity of graphs can result in severe resource under-utilization and load-imbalance problems. This paper presents a GNNear accelerator to tackle these challenges. GNNear adopts a DIMM-based memory system to provide sufficient memory capacity. To match the heterogeneous nature of GNN training, we offload the memory-intensive Reduce operations to in-DIMM Near-Memory-Engines (NMEs), making full use of the high aggregated local bandwidth. We adopt a Centralized-Acceleration-Engine (CAE) to process the computation-intensive Update operations. We further propose several optimization strategies to deal with the irregularity of input graphs and improve GNNear's performance. Comprehensive evaluations on 16 GNN training tasks demonstrate that GNNear achieves 30.8$\times$/2.5$\times$ geomean speedup and 79.6$\times$/7.3$\times$(geomean) higher energy efficiency compared to Xeon E5-2698-v4 CPU and NVIDIA V100 GPU.

Citations (21)

Summary

We haven't generated a summary for this paper yet.