Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning to Subphenotype Delirium Patients from Electronic Health Records (2111.00592v1)

Published 31 Oct 2021 in cs.LG and cs.AI

Abstract: Delirium is a common acute onset brain dysfunction in the emergency setting and is associated with higher mortality. It is difficult to detect and monitor since its presentations and risk factors can be different depending on the underlying medical condition of patients. In our study, we aimed to identify subtypes within the delirium population and build subgroup-specific predictive models to detect delirium using Medical Information Mart for Intensive Care IV (MIMIC-IV) data. We showed that clusters exist within the delirium population. Differences in feature importance were also observed for subgroup-specific predictive models. Our work could recalibrate existing delirium prediction models for each delirium subgroup and improve the precision of delirium detection and monitoring for ICU or emergency department patients who had highly heterogeneous medical conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.