Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAdaQuant: Doubly-adaptive quantization for communication-efficient Federated Learning (2111.00465v1)

Published 31 Oct 2021 in cs.LG

Abstract: Federated Learning (FL) is a powerful technique for training a model on a server with data from several clients in a privacy-preserving manner. In FL, a server sends the model to every client, who then train the model locally and send it back to the server. The server aggregates the updated models and repeats the process for several rounds. FL incurs significant communication costs, in particular when transmitting the updated local models from the clients back to the server. Recently proposed algorithms quantize the model parameters to efficiently compress FL communication. These algorithms typically have a quantization level that controls the compression factor. We find that dynamic adaptations of the quantization level can boost compression without sacrificing model quality. First, we introduce a time-adaptive quantization algorithm that increases the quantization level as training progresses. Second, we introduce a client-adaptive quantization algorithm that assigns each individual client the optimal quantization level at every round. Finally, we combine both algorithms into DAdaQuant, the doubly-adaptive quantization algorithm. Our experiments show that DAdaQuant consistently improves client$\rightarrow$server compression, outperforming the strongest non-adaptive baselines by up to $2.8\times$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Robert Hönig (5 papers)
  2. Yiren Zhao (58 papers)
  3. Robert Mullins (38 papers)
Citations (47)

Summary

We haven't generated a summary for this paper yet.