Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize (2110.15412v3)

Published 28 Oct 2021 in math.OC and cs.LG

Abstract: We investigate the convergence of stochastic mirror descent (SMD) under interpolation in relatively smooth and smooth convex optimization. In relatively smooth convex optimization we provide new convergence guarantees for SMD with a constant stepsize. For smooth convex optimization we propose a new adaptive stepsize scheme -- the mirror stochastic Polyak stepsize (mSPS). Notably, our convergence results in both settings do not make bounded gradient assumptions or bounded variance assumptions, and we show convergence to a neighborhood that vanishes under interpolation. Consequently, these results correspond to the first convergence guarantees under interpolation for the exponentiated gradient algorithm for fixed or adaptive stepsizes. mSPS generalizes the recently proposed stochastic Polyak stepsize (SPS) (Loizou et al. 2021) to mirror descent and remains both practical and efficient for modern machine learning applications while inheriting the benefits of mirror descent. We complement our results with experiments across various supervised learning tasks and different instances of SMD, demonstrating the effectiveness of mSPS.

Citations (29)

Summary

We haven't generated a summary for this paper yet.