Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guided Evolution for Neural Architecture Search (2110.15232v1)

Published 28 Oct 2021 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Neural Architecture Search (NAS) methods have been successfully applied to image tasks with excellent results. However, NAS methods are often complex and tend to converge to local minima as soon as generated architectures seem to yield good results. In this paper, we propose G-EA, a novel approach for guided evolutionary NAS. The rationale behind G-EA, is to explore the search space by generating and evaluating several architectures in each generation at initialization stage using a zero-proxy estimator, where only the highest-scoring network is trained and kept for the next generation. This evaluation at initialization stage allows continuous extraction of knowledge from the search space without increasing computation, thus allowing the search to be efficiently guided. Moreover, G-EA forces exploitation of the most performant networks by descendant generation while at the same time forcing exploration by parent mutation and by favouring younger architectures to the detriment of older ones. Experimental results demonstrate the effectiveness of the proposed method, showing that G-EA achieves state-of-the-art results in NAS-Bench-201 search space in CIFAR-10, CIFAR-100 and ImageNet16-120, with mean accuracies of 93.98%, 72.12% and 45.94% respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Vasco Lopes (17 papers)
  2. Miguel Santos (4 papers)
  3. Bruno Degardin (5 papers)
  4. Luís A. Alexandre (35 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.