Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RGP: Neural Network Pruning through Its Regular Graph Structure (2110.15192v2)

Published 28 Oct 2021 in cs.LG and cs.AI

Abstract: Lightweight model design has become an important direction in the application of deep learning technology, pruning is an effective mean to achieve a large reduction in model parameters and FLOPs. The existing neural network pruning methods mostly start from the importance of parameters, and design parameter evaluation metrics to perform parameter pruning iteratively. These methods are not studied from the perspective of model topology, may be effective but not efficient, and requires completely different pruning for different datasets. In this paper, we study the graph structure of the neural network, and propose regular graph based pruning (RGP) to perform a one-shot neural network pruning. We generate a regular graph, set the node degree value of the graph to meet the pruning ratio, and reduce the average shortest path length of the graph by swapping the edges to obtain the optimal edge distribution. Finally, the obtained graph is mapped into a neural network structure to realize pruning. Experiments show that the average shortest path length of the graph is negatively correlated with the classification accuracy of the corresponding neural network, and the proposed RGP shows a strong precision retention capability with extremely high parameter reduction (more than 90%) and FLOPs reduction (more than 90%).

Citations (1)

Summary

We haven't generated a summary for this paper yet.