Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Multi-Class Anomaly Detection (2110.15108v3)

Published 28 Oct 2021 in cs.LG and cs.AI

Abstract: We study anomaly detection for the case when the normal class consists of more than one object category. This is an obvious generalization of the standard one-class anomaly detection problem. However, we show that jointly using multiple one-class anomaly detectors to solve this problem yields poorer results as compared to training a single one-class anomaly detector on all normal object categories together. We further develop a new anomaly detector called DeepMAD that learns compact distinguishing features by exploiting the multiple normal objects categories. This algorithm achieves higher AUC values for different datasets compared to two top performing one-class algorithms that either are trained on each normal object category or jointly trained on all normal object categories combined. In addition to theoretical results we present empirical results using the CIFAR-10, fMNIST, CIFAR-100, and a new dataset we developed called RECYCLE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.