Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids (2110.15093v3)

Published 27 Oct 2021 in cs.LG and cs.AI

Abstract: Q-learning is a popular reinforcement learning algorithm. This algorithm has however been studied and analysed mainly in the infinite horizon setting. There are several important applications which can be modeled in the framework of finite horizon Markov decision processes. We develop a version of Q-learning algorithm for finite horizon Markov decision processes (MDP) and provide a full proof of its stability and convergence. Our analysis of stability and convergence of finite horizon Q-learning is based entirely on the ordinary differential equations (O.D.E) method. We also demonstrate the performance of our algorithm on a setting of random MDP as well as on an application on smart grids.

Citations (6)

Summary

We haven't generated a summary for this paper yet.