Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A machine learning approach for fighting the curse of dimensionality in global optimization (2110.14985v2)

Published 28 Oct 2021 in cs.LG and math.OC

Abstract: Finding global optima in high-dimensional optimization problems is extremely challenging since the number of function evaluations required to sufficiently explore the search space increases exponentially with its dimensionality. Furthermore, multimodal cost functions render local gradient-based search techniques ineffective. To overcome these difficulties, we propose to trim uninteresting regions of the search space where global optima are unlikely to be found by means of autoencoders, exploiting the lower intrinsic dimensionality of certain cost functions; optima are then searched over lower-dimensional latent spaces. The methodology is tested on benchmark functions and on multiple variations of a structural topology optimization problem, where we show that we can estimate this intrinsic lower dimensionality and based thereon obtain the global optimum at best or superior results compared to established optimization procedures at worst.

Citations (2)

Summary

We haven't generated a summary for this paper yet.