Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Teaching an Active Learner with Contrastive Examples (2110.14888v3)

Published 28 Oct 2021 in cs.LG and stat.ML

Abstract: We study the problem of active learning with the added twist that the learner is assisted by a helpful teacher. We consider the following natural interaction protocol: At each round, the learner proposes a query asking for the label of an instance $xq$, the teacher provides the requested label ${xq, yq}$ along with explanatory information to guide the learning process. In this paper, we view this information in the form of an additional contrastive example (${xc, yc}$) where $xc$ is picked from a set constrained by $xq$ (e.g., dissimilar instances with the same label). Our focus is to design a teaching algorithm that can provide an informative sequence of contrastive examples to the learner to speed up the learning process. We show that this leads to a challenging sequence optimization problem where the algorithm's choices at a given round depend on the history of interactions. We investigate an efficient teaching algorithm that adaptively picks these contrastive examples. We derive strong performance guarantees for our algorithm based on two problem-dependent parameters and further show that for specific types of active learners (e.g., a generalized binary search learner), the proposed teaching algorithm exhibits strong approximation guarantees. Finally, we illustrate our bounds and demonstrate the effectiveness of our teaching framework via two numerical case studies.

Citations (9)

Summary

We haven't generated a summary for this paper yet.