Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vision Transformer for Classification of Breast Ultrasound Images (2110.14731v2)

Published 27 Oct 2021 in cs.CV

Abstract: Medical ultrasound (US) imaging has become a prominent modality for breast cancer imaging due to its ease-of-use, low-cost and safety. In the past decade, convolutional neural networks (CNNs) have emerged as the method of choice in vision applications and have shown excellent potential in automatic classification of US images. Despite their success, their restricted local receptive field limits their ability to learn global context information. Recently, Vision Transformer (ViT) designs that are based on self-attention between image patches have shown great potential to be an alternative to CNNs. In this study, for the first time, we utilize ViT to classify breast US images using different augmentation strategies. The results are provided as classification accuracy and Area Under the Curve (AUC) metrics, and the performance is compared with the state-of-the-art CNNs. The results indicate that the ViT models have comparable efficiency with or even better than the CNNs in classification of US breast images.

Citations (75)

Summary

We haven't generated a summary for this paper yet.