Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TopicNet: Semantic Graph-Guided Topic Discovery (2110.14286v1)

Published 27 Oct 2021 in cs.LG and cs.IR

Abstract: Existing deep hierarchical topic models are able to extract semantically meaningful topics from a text corpus in an unsupervised manner and automatically organize them into a topic hierarchy. However, it is unclear how to incorporate prior beliefs such as knowledge graph to guide the learning of the topic hierarchy. To address this issue, we introduce TopicNet as a deep hierarchical topic model that can inject prior structural knowledge as an inductive bias to influence learning. TopicNet represents each topic as a Gaussian-distributed embedding vector, projects the topics of all layers into a shared embedding space, and explores both the symmetric and asymmetric similarities between Gaussian embedding vectors to incorporate prior semantic hierarchies. With an auto-encoding variational inference network, the model parameters are optimized by minimizing the evidence lower bound and a regularization term via stochastic gradient descent. Experiments on widely used benchmarks show that TopicNet outperforms related deep topic models on discovering deeper interpretable topics and mining better document~representations.

Citations (15)

Summary

We haven't generated a summary for this paper yet.