Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Mutual Information via Geodesic $k$NN (2110.13883v2)

Published 26 Oct 2021 in cs.IT and math.IT

Abstract: Estimating mutual information (MI) between two continuous random variables $X$ and $Y$ allows to capture non-linear dependencies between them, non-parametrically. As such, MI estimation lies at the core of many data science applications. Yet, robustly estimating MI for high-dimensional $X$ and $Y$ is still an open research question. In this paper, we formulate this problem through the lens of manifold learning. That is, we leverage the common assumption that the information of $X$ and $Y$ is captured by a low-dimensional manifold embedded in the observed high-dimensional space and transfer it to MI estimation. As an extension to state-of-the-art $k$NN estimators, we propose to determine the $k$-nearest neighbors via geodesic distances on this manifold rather than from the ambient space, which allows us to estimate MI even in the high-dimensional setting. An empirical evaluation of our method, G-KSG, against the state-of-the-art shows that it yields good estimations of MI in classical benchmark and manifold tasks, even for high dimensional datasets, which none of the existing methods can provide.

Citations (3)

Summary

We haven't generated a summary for this paper yet.