Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Equivariant Estimation of the Selected Guarantee Time (2110.13842v1)

Published 26 Oct 2021 in math.ST and stat.TH

Abstract: Consider two independent exponential populations having different unknown location parameters and a common unknown scale parameter. Call the population associated with the larger location parameter as the "best" population and the population associated with the smaller location parameter as the "worst" population. For the goal of selecting the best (worst) population a natural selection rule, that has many optimum properties, is the one which selects the population corresponding to the larger (smaller) minimal sufficient statistic. In this article, we consider the problem of estimating the location parameter of the population selected using this natural selection rule. For estimating the location parameter of the selected best population, we derive the uniformly minimum variance unbiased estimator (UMVUE) and show that the analogue of the best affine equivariant estimators (BAEEs) of location parameters is a generalized Bayes estimator. We provide some admissibility and minimaxity results for estimators in the class of linear, affine and permutation equivariant estimators, under the criterion of scaled mean squared error. We also derive a sufficient condition for inadmissibility of an arbitrary affine and permutation equivariant estimator. We provide similar results for the problem of estimating the location parameter of the selected population when the selection goal is that of selecting the worst exponential population. Finally, we provide a simulation study to compare, numerically, the performances of some of the proposed estimators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)