Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MarS-FL: Enabling Competitors to Collaborate in Federated Learning (2110.13464v2)

Published 26 Oct 2021 in cs.LG and cs.GT

Abstract: Federated learning (FL) is rapidly gaining popularity and enables multiple data owners ({\em a.k.a.} FL participants) to collaboratively train machine learning models in a privacy-preserving way. A key unaddressed scenario is that these FL participants are in a competitive market, where market shares represent their competitiveness. Although they are interested to enhance the performance of their respective models through FL, market leaders (who are often data owners who can contribute significantly to building high performance FL models) want to avoid losing their market shares by enhancing their competitors' models. Currently, there is no modeling tool to analyze such scenarios and support informed decision-making. In this paper, we bridge this gap by proposing the \underline{mar}ket \underline{s}hare-based decision support framework for participation in \underline{FL} (MarS-FL). We introduce {\em two notions of $\delta$-stable market} and {\em friendliness} to measure the viability of FL and the market acceptability of FL. The FL participants' behaviours can then be predicted using game theoretic tools (i.e., their optimal strategies concerning participation in FL). If the market $\delta$-stability is achievable, the final model performance improvement of each FL-PT shall be bounded, which relates to the market conditions of FL applications. We provide tight bounds and quantify the friendliness, $\kappa$, of given market conditions to FL. Experimental results show the viability of FL in a wide range of market conditions. Our results are useful for identifying the market conditions under which collaborative FL model training is viable among competitors, and the requirements that have to be imposed while applying FL under these conditions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.