Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Role of Self-Supervised Learning in Out-of-Distribution Detection Task (2110.13435v1)

Published 26 Oct 2021 in cs.CV and cs.LG

Abstract: Self-supervised learning (SSL) has achieved great success in a variety of computer vision tasks. However, the mechanism of how SSL works in these tasks remains a mystery. In this paper, we study how SSL can enhance the performance of the out-of-distribution (OOD) detection task. We first point out two general properties that a good OOD detector should have: 1) the overall feature space should be large and 2) the inlier feature space should be small. Then we demonstrate that SSL can indeed increase the intrinsic dimension of the overall feature space. In the meantime, SSL even has the potential to shrink the inlier feature space. As a result, there will be more space spared for the outliers, making OOD detection much easier. The conditions when SSL can shrink the inlier feature space is also discussed and validated. By understanding the role of SSL in the OOD detection task, our study can provide a guideline for designing better OOD detection algorithms. Moreover, this work can also shed light to other tasks where SSL can improve the performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.