Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RGB Camera-based Physiological Sensing: Challenges and Future Directions (2110.13362v2)

Published 26 Oct 2021 in cs.CV and cs.HC

Abstract: Numerous real-world applications have been driven by the recent algorithmic advancement of AI. Healthcare is no exception and AI technologies have great potential to revolutionize the industry. Non-contact camera-based physiological sensing, including remote photoplethysmography (rPPG), is a set of imaging methods that leverages ordinary RGB cameras (e.g., webcam or smartphone camera) to capture subtle changes in electromagnetic radiation (e.g., light) reflected by the body caused by physiological processes. RGB camera-based systems not only have the ability to measure the signals without contact with the body but also have the opportunity to capture multimodal information (e.g., facial expressions, activities and other context) from the same sensor. However, developing accessible, equitable and useful camera-based physiological sensing systems comes with various challenges. In this article, we identify four research challenges for the field of RGB camera-based physiological sensing and broader AI driven healthcare communities and suggest future directions to tackle these. We believe solving these challenges will help deliver accurate, equitable and generalizable AI systems for healthcare that are practical in real-world and clinical contexts.

Citations (7)

Summary

We haven't generated a summary for this paper yet.