Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Metalearning Approach for Physics-Informed Neural Networks (PINNs): Application to Parameterized PDEs (2110.13361v2)

Published 26 Oct 2021 in physics.comp-ph and cs.LG

Abstract: Physics-informed neural networks (PINNs) as a means of discretizing partial differential equations (PDEs) are garnering much attention in the Computational Science and Engineering (CS&E) world. At least two challenges exist for PINNs at present: an understanding of accuracy and convergence characteristics with respect to tunable parameters and identification of optimization strategies that make PINNs as efficient as other computational science tools. The cost of PINNs training remains a major challenge of Physics-informed Machine Learning (PiML) - and, in fact, ML in general. This paper is meant to move towards addressing the latter through the study of PINNs on new tasks, for which parameterized PDEs provides a good testbed application as tasks can be easily defined in this context. Following the ML world, we introduce metalearning of PINNs with application to parameterized PDEs. By introducing metalearning and transfer learning concepts, we can greatly accelerate the PINNs optimization process. We present a survey of model-agnostic metalearning, and then discuss our model-aware metalearning applied to PINNs as well as implementation considerations and algorithmic complexity. We then test our approach on various canonical forward parameterized PDEs that have been presented in the emerging PINNs literature.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Michael Penwarden (7 papers)
  2. Shandian Zhe (58 papers)
  3. Akil Narayan (77 papers)
  4. Robert M. Kirby (149 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.