Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VAC-CNN: A Visual Analytics System for Comparative Studies of Deep Convolutional Neural Networks (2110.13252v2)

Published 25 Oct 2021 in cs.LG and cs.HC

Abstract: The rapid development of Convolutional Neural Networks (CNNs) in recent years has triggered significant breakthroughs in many ML applications. The ability to understand and compare various CNN models available is thus essential. The conventional approach with visualizing each model's quantitative features, such as classification accuracy and computational complexity, is not sufficient for a deeper understanding and comparison of the behaviors of different models. Moreover, most of the existing tools for assessing CNN behaviors only support comparison between two models and lack the flexibility of customizing the analysis tasks according to user needs. This paper presents a visual analytics system, VAC-CNN (Visual Analytics for Comparing CNNs), that supports the in-depth inspection of a single CNN model as well as comparative studies of two or more models. The ability to compare a larger number of (e.g., tens of) models especially distinguishes our system from previous ones. With a carefully designed model visualization and explaining support, VAC-CNN facilitates a highly interactive workflow that promptly presents both quantitative and qualitative information at each analysis stage. We demonstrate VAC-CNN's effectiveness for assisting novice ML practitioners in evaluating and comparing multiple CNN models through two use cases and one preliminary evaluation study using the image classification tasks on the ImageNet dataset.

Citations (16)

Summary

We haven't generated a summary for this paper yet.