Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rotation Equivariant Deforestation Segmentation and Driver Classification (2110.13097v2)

Published 25 Oct 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Deforestation has become a significant contributing factor to climate change and, due to this, both classifying the drivers and predicting segmentation maps of deforestation has attracted significant interest. In this work, we develop a rotation equivariant convolutional neural network model to predict the drivers and generate segmentation maps of deforestation events from Landsat 8 satellite images. This outperforms previous methods in classifying the drivers and predicting the segmentation map of deforestation, offering a 9% improvement in classification accuracy and a 7% improvement in segmentation map accuracy. In addition, this method predicts stable segmentation maps under rotation of the input image, which ensures that predicted regions of deforestation are not dependent upon the rotational orientation of the satellite.

Citations (6)

Summary

We haven't generated a summary for this paper yet.