Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Planning for Risk-Aversion and Expected Value in MDPs (2110.12746v2)

Published 25 Oct 2021 in cs.AI, cs.SY, and eess.SY

Abstract: Planning in Markov decision processes (MDPs) typically optimises the expected cost. However, optimising the expectation does not consider the risk that for any given run of the MDP, the total cost received may be unacceptably high. An alternative approach is to find a policy which optimises a risk-averse objective such as conditional value at risk (CVaR). However, optimising the CVaR alone may result in poor performance in expectation. In this work, we begin by showing that there can be multiple policies which obtain the optimal CVaR. This motivates us to propose a lexicographic approach which minimises the expected cost subject to the constraint that the CVaR of the total cost is optimal. We present an algorithm for this problem and evaluate our approach on four domains. Our results demonstrate that our lexicographic approach improves the expected cost compared to the state of the art algorithm, while achieving the optimal CVaR.

Citations (9)

Summary

We haven't generated a summary for this paper yet.