Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Distillation Learning Model of Adaptive Structural Deep Belief Network for AffectNet: Facial Expression Image Database (2110.12717v1)

Published 25 Oct 2021 in cs.CV and cs.NE

Abstract: Deep Learning has a hierarchical network architecture to represent the complicated feature of input patterns. We have developed the adaptive structure learning method of Deep Belief Network (DBN) that can discover an optimal number of hidden neurons for given input data in a Restricted Boltzmann Machine (RBM) by neuron generation-annihilation algorithm, and can obtain the appropriate number of hidden layers in DBN. In this paper, our model is applied to a facial expression image data set, AffectNet. The system has higher classification capability than the traditional CNN. However, our model was not able to classify some test cases correctly because human emotions contain many ambiguous features or patterns leading wrong answer by two or more annotators who have different subjective judgment for a facial image. In order to represent such cases, this paper investigated a distillation learning model of Adaptive DBN. The original trained model can be seen as a parent model and some child models are trained for some mis-classified cases. For the difference between the parent model and the child one, KL divergence is monitored and then some appropriate new neurons at the parent model are generated according to KL divergence to improve classification accuracy. In this paper, the classification accuracy was improved from 78.4% to 91.3% by the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.