Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partially Intervenable Causal Models (2110.12541v2)

Published 24 Oct 2021 in stat.ME, cs.AI, math.ST, and stat.TH

Abstract: Graphical causal models led to the development of complete non-parametric identification theory in arbitrary structured systems, and general approaches to efficient inference. Nevertheless, graphical approaches to causal inference have not been embraced by the statistics and public health communities. In those communities causal assumptions are instead expressed in terms of potential outcomes, or responses to hypothetical interventions. Such interventions are generally conceptualized only on a limited set of variables, where the corresponding experiment could, in principle, be performed. By contrast, graphical approaches to causal inference generally assume interventions on all variables are well defined - an overly restrictive and unrealistic assumption that may have limited the adoption of these approaches in applied work in statistics and public health. In this paper, we build on a unification of graphical and potential outcomes approaches to causality exemplified by Single World Intervention Graphs (SWIGs) to define graphical models with a restricted set of allowed interventions. We give a complete identification theory for such models, and develop a complete calculus of interventions based on a generalization of the do-calculus, and axioms that govern probabilistic operations on Markov kernels. A corollary of our results is a complete identification theory for causal effects in another graphical framework with a restricted set of interventions, the decision theoretic graphical formulation of causality.

Summary

We haven't generated a summary for this paper yet.