Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NAS-FCOS: Efficient Search for Object Detection Architectures (2110.12423v1)

Published 24 Oct 2021 in cs.CV

Abstract: Neural Architecture Search (NAS) has shown great potential in effectively reducing manual effort in network design by automatically discovering optimal architectures. What is noteworthy is that as of now, object detection is less touched by NAS algorithms despite its significant importance in computer vision. To the best of our knowledge, most of the recent NAS studies on object detection tasks fail to satisfactorily strike a balance between performance and efficiency of the resulting models, let alone the excessive amount of computational resources cost by those algorithms. Here we propose an efficient method to obtain better object detectors by searching for the feature pyramid network (FPN) as well as the prediction head of a simple anchor-free object detector, namely, FCOS [36], using a tailored reinforcement learning paradigm. With carefully designed search space, search algorithms, and strategies for evaluating network quality, we are able to find top-performing detection architectures within 4 days using 8 V100 GPUs. The discovered architectures surpass state-of-the-art object detection models (such as Faster R-CNN, Retina-Net and, FCOS) by 1.0% to 5.4% points in AP on the COCO dataset, with comparable computation complexity and memory footprint, demonstrating the efficacy of the proposed NAS method for object detection. Code is available at https://github.com/Lausannen/NAS-FCOS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Ning Wang (300 papers)
  2. Yang Gao (761 papers)
  3. Hao Chen (1006 papers)
  4. Peng Wang (832 papers)
  5. Zhi Tian (68 papers)
  6. Chunhua Shen (404 papers)
  7. Yanning Zhang (170 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.