2000 character limit reached
An adaptive model hierarchy for data-augmented training of kernel models for reactive flow (2110.12388v4)
Published 24 Oct 2021 in math.NA and cs.NA
Abstract: We consider machine-learning of time-dependent quantities of interest derived from solution trajectories of parabolic partial differential equations. For large-scale or long-time integration scenarios, where using a full order model (FOM) to generate sufficient training data is computationally prohibitive, we propose an adaptive hierarchy of intermediate Reduced Basis reduced order models (ROM) to augment the FOM training data by certified ROM training data required to fit a kernel model.